13 research outputs found

    Remotely Keyed CryptoGraphics - Secure Remote Display Access Using (Mostly) Untrusted Hardware - Extended Version

    Get PDF
    Software that covertly monitors user actions, also known as spyware, has become a first-level security threat due to its ubiquity and the difficulty of detecting and removing it. Such software may be inadvertently installed by a user that is casually browsing the web, or may be purposely installed by an attacker or even the owner of a system. This is particularly problematic in the case of utility computing, early manifestations of which are Internet cafes and thin-client computing. Traditional trusted computing approaches offer a partial solution to this by significantly increasing the size of the trusted computing base (TCB) to include the operating system and other software. We examine the problem of protecting a user accessing specific services in such an environment. We focus on secure video broadcasts and remote desktop access when using any convenient, and often untrusted, terminal as two example applications. We posit that, at least for such applications, the TCB can be confined to a suitably modified graphics processing unit (GPU). Specifically, to prevent spyware on untrusted clients from accessing the user's data, we restrict the boundary of trust to the client's GPU by moving image decryption into GPUs. We use the GPU in order to leverage existing capabilities as opposed to designing a new component from scratch. We discuss the applicability of GPU-based decryption in these two sample scenarios and identify the limitations of the current generation of GPUs. We propose straightforward modifications to future GPUs that will allow the realization of the full approach

    ABSTRACT THINC: A Virtual Display Architecture for Thin-Client Computing

    No full text
    Rapid improvements in network bandwidth, cost, and ubiquity combined with the security hazards and high total cost of ownership of personal computers have created a growing market for thin-client computing. We introduce THINC, a virtual display architecture for high-performance thin-client computing in both LAN and WAN environments. THINC virtualizes the display at the device driver interface to transparently intercept application display commands and translate them into a few simple low-level commands that can be easily supported by widely used client hardware. THINC’s translation mechanism efficiently leverages display semantic information through novel optimizations such as offscreen drawing awareness, native video support, and server-side screen scaling. This is integrated with an update delivery architecture that uses shortest command first scheduling and non-blocking operation. THINC leverages existing display system functionality and works seamlessly with unmodified applications, window systems, and operating systems. We have implemented THINC in an X/Linux environment and compared its performance against widely used commercial approaches, including Citrix MetaFrame, Microsoft RDP, GoToMyPC, X, NX, VNC, and Sun Ray. Our experimental results on web and audio/video applications demonstrate that THINC can provide up to 4.8 times faster web browsing performance and two orders of magnitude better audio/video performance. THINC is the only thin client capable of transparently playing full-screen video and audio at full frame rate in both LAN and WAN environments. Our results also show for the first time that thin clients can even provide good performance using remote clients located in other countries around the world

    DejaView: a personal virtual computer recorder

    No full text
    As users interact with the world and their peers through their computers, it is becoming important to archive and later search the information that they have viewed. We present DejaView, a personal virtual computer recorder that provides a complete record of a desktop computing experience that a user can playback, browse, search, and revive seamlessly. DejaView records visual output, checkpoints corresponding application and file system state, and captures displayed text with contextual information to index the record. A user can then browse and search the record for any visual information that has been displayed on the desktop, and revive and interact with the desktop computing state corresponding to any point in the record. DejaView combines display, operating system, and file system virtualization to provide its functionality transparently without any modifications to applications, window systems, or operating system kernels. We have implemented DejaView and evaluated its performance on real-world desktop applications. Our results demonstrate that DejaView can provide continuous low-overhead recording without any user noticeable performance degradation, and allows browsing, search and playback of records fast enough for interactive use

    THINC

    No full text
    corecore